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Abstract

The harbinger of a far more lethal and difficult-to-treat disease, early breast cancer is

a key, but often overlooked, point of study. Early breast cancers are often difficult to

detect and classify, and the subjective nature of the histopathological methods used to

detect them often result in dissenting diagnoses between clinicians. These issues can

be mitigated through the use of quantitative computational methods, although existing

solutions do not account for the heterogeneity of tumours, and often do not operate in

manner that is transparent to the clinician; precluding their utility in a clinical setting.

This work presents two models which address the concerns of tumour intrahetero-

geneity by detecting, classifying and annotating regions within fields of breast biopsy

sections that appear to belong to early lesions. The PPReCOGG model, which is a

GPU-accelerated texture-based classifier, is able to generate pixel-resolution annotations

of cell-patterning that is characteristic of early lesions with robust accuracy (≈ 94.3%

average accuracy in synthetic benchmarks). DeepDuct is a deep learning model that

provides accurate and transparent localisation and classification of lesions using gradient-

based class activation maps (Grad-CAM). These two models illustrate that it is possible

to develop clinically relevant classifiers that can achieve robust accuracy and account for

tumour heterogeneity and model transparency.
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Résumé

Signe annonciateur d’une maladie létale et difficile à traiter, le cancer du sein au stade pré-

coce est un sujet d’étude qui malgré son importance, est souvent négligé. Le cancer du sein

au stade précoce est difficile à détecter et à classifier. Les méthodes histopathologiques

utilisées pour détecter ces cancers sont subjectives, et résultent souvent en des diagnostics

variables dépendant du professionnel responsable du. L’utilisation de méthodes informa-

tiques quantitatives peut atténuer ces problèmes, mais les solutions existantes ne prennent

pas en compte l’hétérogénéité intratumorale. Le fonctionnement souvent obscur de ces

méthodes constitue également un obstacle à leur utilisation par des professionnels dans

un contexte clinique.

Nous avons développé deux méthodes informatiques afin de résoudre le problème lié à

l’hétérogénéité intra-tumorale. Ces dernières sont basées sur la détection, la classification

et l’annotation de régions situées dans des sections de biopsies mammaires qui correspon-

dent à des lésions précoces. Le modèle « PPReCOGG » est un classificateur, accéléré

par la GPU, qui utilise les textures pour permettre l’annotation de régions contenant des

cellules présentant des caractéristiques de cancers du sein précoces. Cette annotation est

basée sur la résolution de pixels et permet une détection très précise des régions concernées

(environ 94,3% d’exactitude moyenne sur les références artificielles). « DeepDuct » cor-

respond à un modèle d’apprentissage profond permettant une localisation et une classifi-

cation précise des lésions, via l’utilisation de l’algorithme « Grad-CAM ».

Ces deux méthodes démontrent qu’il est possible de développer des classificateurs

capables de détecter l’hétérogénéité intra-tumorale de façon précise dans le cancer du

sein, tout en restant faciles d’utilisation pour les cliniciens.
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1. Introduction

1.1 An Anatomy of Early Breast Cancers

Breast cancer is both a common and lethal disease, having earned the dubious distinc-

tion of being both the most common and second most fatal cancer amongst females in

Canada and around the world (Canadian Cancer Society’s Advisory Committee on Cancer

Statistics, 2015). Breast cancer most commonly arises in the epithelium of the mammary

gland’s many lactiferous ducts, which form a network that delivers to the nipple the milk

that is secreted by the lobules of the mammary gland; which is another common origin

of breast carcinomas (Figure 1.1). The epithelium of the lactiferous duct is highly or-

ganised, with well-defined tissue and cell polarity that is integral to the structure and

function of the duct. The tube-like lactiferous duct is comprise of an epithelial inner-

layer, which forms a hollow lumen and is surrounded by an outer layer of myoepithelial

cells which express smooth-muscle actin (SMA) whose muscle-like contractile properties

biomechanically deliver milk along the duct in response to hormonal signalling (Hamperl,

1970).

1.1.1 Stages of Early Breast Cancer Progression

When diagnosing a suspected early breast cancer, pathologists analyse needle-core biop-

sies with the aim of identifying and classifying any lesions that may be present. Clas-

sification of lesions allow medical professionals to better understand the nature of the

particular disease, what treatment is most appropriate, and what statistical outcomes

are associated with the lesion.

The early stages of breast cancer manifest as pre-invasive, hyper-proliferative lesions

that exhibit progressive and gradual deterioration of this epithelial organisation. These

lesions belong to four histologically distinct classes: Usual Hyperplasia (UH), Flat Epithe-
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1.1. AN ANATOMY OF EARLY BREAST CANCERS

Figure 1.1: Diagram of the human mammary gland and its ducts and lobules. (National
Institutes of Health, 2010)

lial Atypia (FEA), Atypical Ductal Hyperplasia (ADH) (or Atypical Lobular Hyperplasia

[ALH] when referring to the less common lobular lesion), and Ductal Carcinoma In Situ

(DCIS).

Ductal or lobular hyperplasias that do not present with abnormal tissue architecture or

dysplasia are classified as Usual Hyperplasia (UH), or alternatively Proliferative Disease

without Atypia (PDWA). These lesions confer a relative risk of later developping breast

cancer as high as 1.9, although this increase in risk is not considered sufficient to warrant

any prophylactic measures, including increased follow-up (Mommers et al., 2001). While

UH is traditionally believed to progress serially through ADH, DCIS and ultimately IDC

due to early Loss of Homozygosity (LOH), more recent cytokeratin immunophenotype

and genetic hybridisation analysis has contested the evolutionary relationship between

UH and other proliferative breast lesions (O’Connell et al., 1994; Boecker et al., 2002).

ADH lesions are neoplasias of the lactiferous duct that exhibit subtle dysplasia (as

evidenced by nuclear hyperchromaticity), and can form micropapillary or cribiform pat-

terns (Page et al., 1959; Dion et al., 2016). Of the estimated one million instances of
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1.1. AN ANATOMY OF EARLY BREAST CANCERS

benign breast cancer detected in the USA each year, 10% are classified as ADH (Simp-

son, 2009). While these lesions have been long-known and extensively proven to impart a

low relative risk of malignant disease, recent long-term follow-up studies have shown that

one in eight individuals will develop more advanced (local or invasive) breast cancers ten

years after their diagnosis. This proportion increases to 46% in individuals with more

than one atypical foci twenty-five years after diagnosis (Hartmann et al., 2015).

Arising in the terminal duct-lobule unit of the breast, FEA lesions are a purported

precursor to early low-grade ductal carcinomas, and in this regard are similar to ADH.

Unlike ADH however, FEA lesions are far more uncommon, never present with complex

architectural patterns (thus the indication “flat”), and are characterised by multi-layered

dilated ascini often made-up of columnar cells (Pinder, 2017). While ADH is suspected

to arise from FEA lesions due their frequent coincidence, FEA is not independently

associated with a long-term increased risk of breast cancer, leaving the matter unclear

(Bombonati & Sgroi, 2011; Lerwill, 2008; Acott & Mancino, 2016).

Benign early lesions go on to progress into localised malignant disease, which in the

lactiferous duct is termed ductal carcinoma in situ (DCIS). DCIS is classified as a Stage

0 cancer and accounts for 20% of all diagnosed breast cancers in the USA in 2003; repre-

senting a 500% increase in occurrence over 20 years (Bleicher, 2013; Kerlikowske, 2010).

While DCIS has a relatively low average standardised mortality ratio (SMR) of 1.8,

an estimated 30-50% of cases reoccur as invasive breast cancers (Narod et al., 2015; Page

et al., 1982; Betsill et al., 1978). When further stratified by how well the lesion is differ-

entiated, individuals with lesions classified as poorly differentiated (using the European

Pathologists Working Group guidelines) have recurrence rates above 60% (Badve et al.,

1998). At this early stage of cancer progression, the apical domain of the lumenal epithe-

lium has begun to shrink, resulting in abnormally small lumen (a phenotype referred to

as “lumenal collapse” herein). Our understanding of the processes by which transformed

mammary duct epithelium undergoes lumenal collapse is still developing, but recent stud-

ies have described a mechanism by which lumenal tension is lost as myosin II and RhoA

activity is greatly decreased at the lumenal membrane of DCIS lesions (Halaoui et al.,
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1.1. AN ANATOMY OF EARLY BREAST CANCERS

2017).

The lesion becomes an invasive ductal carcinoma (IDC, or ILC in the lobular instances)

when epithelial cells breach the surrounding myoepithelial layer of the duct and infiltrate

into extra-cellular matrix (ECM). By this stage, cellular polarity is entirely disrupted and

the apical membrane domain has completely disappeared.

1.1.2 Intrinsic Molecular Subtypes of Cancer

While the stage of a breast lesion may indicate its progression, even lesions of the same

stage are heterogenous in their gene expression and their response to therapy. To ad-

dress this heterogeneity, microarray studies of recent years have identified five “intrinsic”

molecular subtypes through unsupervised classification of the gene expression data (Perou

et al., 2000; Prat et al., 2015).

Understanding the molecular subtype is an important tool for medical practition-

ers, as breast cancer lesions of different subtypes are associated with different patient

outcomes and respond differently to treatment (Engstrøm et al., 2013; Rouzier et al.,

2005). An alternative to microarray studies, molecular subtypes can be inferred by test-

ing biopsy tissue for the co-occurence of a number of molecular markers, as determined

by routine immunohistochemical(IHC) studies. These markers range from hormone re-

ceptors (estrogren/progesteron receptors, and human epidermal growth factor receptor

2) to proliferation markers (Ki67) (See Figure 1.2).

Molecular subtypes of pre-invasive DCIS lesions have been shown to be detectable in

a similar fashion to their invasive counter-parts, although relative frequencies between

the two being significantly different (Tamimi et al., 2008; Clark et al., 2011). Notably,

triple-negative and basal-like phenotypes are occur very rarely in DCIS when compared

to invasive disease.
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1.2. CURRENT PRACTICES FOR THE DIAGNOSIS OF EARLY BREAST
CANCERS

Unclassi�ed Breast Lesion

ER- and PR-
Yes No

HER2-
Yes No

Luminal B
(HER2+)

Ki67<15%
Yes No

Luminal A Luminal B
(HER2-)

HER2-
Yes No

HER2-TypeCK5- and EGFR-
Yes No

5 Negative
Phenotype

Basal-like
(TNBC)

Figure 1.2: Flowchart for the determination of the molecular subtype of breast lesions.
Molecular subtype can be determined by staining for the estrogen, progesteron, epithelial
growth factor receptors, and human epidermal growth factor receptor 2 (ER, PR, EGFR,
and HER2, respectively), as well as the basal/myoepithelial marker cytokeratin 5 (CK5)
and proliferation marker Ki67. Adapted from Engstrøm et al. (2013).

1.2 Current Practices for the Diagnosis of Early Breast

Cancers

Patients which exhibit symptoms of mammary neoplasmas, or are otherwise suspected to

be at elevated risk due to factors such as age or family history, are subjected to routine

screening by mammography. The sensitivity with which mammography is able to detect

cancerous lesions, however, is often reduced in young patients or patients whose breast

tissue is dense. In the former group, the distinction between invasive and pre-invasive

lesions is often unclear, while the dense tissue of the latter group can obscure and mask

possible lesions (Ayvaci et al., 2014). In such cases, screening via ultrasound can be a

viable alternative, as it offers greater sensitivity (Nothacker et al., 2009).

Suspected lesions detected during the process of screening are diagnosed by histopatho-

logical analysis of tissue biopsies (National Comprehensive Cancer Network, 2017). Tis-

sue obtained through biopsy (core-needle, surgical, or otherwise) are sectioned onto glass

slides, fixed and stained with relevant histological stains such as hematoxilin and eosin
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1.2. CURRENT PRACTICES FOR THE DIAGNOSIS OF EARLY BREAST
CANCERS

(H&E).

Despite the standardised and continually refined methods and guidelines clinical pathol-

ogists rely on to identify breast cancer lesions from histological sections, there is a great

deal of inconsistency and uncertainty that is becoming increasingly apparent. While some

types of breast cancer (such as high-grade DCIS and LCIS) are more consistently and

reliably identified than others, inter-observer agreement between clinical pathologists is

mixed. In a retrospective study, agreement between pathologists for ADH, FEA, and

low-grade DCIS regions was only moderate (0.44, 0.47, and 0.47 Cohen’s κ statistic,

respectively) (Gomes et al., 2014).

Early breast lesions are associated with increased risk of invasive recurrence, and

present important challenges for diagnosis by histopathology. Notably, in a consultation

with clinical pathologists, a majority had cited distinguishing atypical ductal hyperplasias

(ADH) from usual epithelial hyperplasias (UEH) and ductal carcinoma in situ (DCIS) as

the most common challenge among their breast biopsy consultations (Putti et al., 2005).

These distinctions are significant, as outcomes between these lesions are very different,

and are the primary consideration when determining what treatment, if any, to pursue.

Challenges like these can be mitigated in part by computationally assisted detection

and diagnosis (CADe/CADx) software, which analyse medical images in a reproducible

and quantitative manner with the aim of making the interpretation of these data by

clinicians a less complex and subjective practice. While CADe software is sometimes

used to aid in the screening of breast mammographies, challenges such as dimensional

complexity has historically prevented the use of CADe/x to help interpret histological

data (Rangayyan et al., 2007; Madabhushi, 2009).

Despite there being many breast cancer classification models described in the litera-

ture, a major limitation of these models is that they fail to accommodate intra-tumour

heterogeneity as they commonly adopt whole-field classification modalities (Pareja et al.,

2017; Weigelt et al., 2010). Whole-field classification models similarly do not offer in-

sight into so-called “borderline”, which are lesions containing regions exhibiting features

of multiple early lesions (Masood & Rosa, 2011).
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1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

1.3 Machine Learning and the Medical Context

Machine learning is the study of algorithms that can generalise solutions to problem-

spaces without having been explicitly programmed, but instead by “learning” from expe-

riences, employing techniques from the fields of computational statistics, artificial intelli-

gence, and mathematical optimisation.

One of its very first applications, Arthur Samuels coined the term “machine learning”

to describe an automated Checkers-playing computer programme he had devised (Samuel,

1959). The Samuels Checkers programme demonstrated that it was possible to have

machines solve problems by implementing learning algorithms as opposed to programming

solutions in “minute detail” in situations where doing so may be unreasonably onerous or

even entirely infeasible.

Medical applications of machine learning can be found early in its history, with Earl

Hunt’s application of his Concept Learning System (CLS) for the purpose of medical

diagnosis and prognosis as early as 1966 (Hunt et al., 1966). Hunt recognised and stated

that machine-learning techniques such as his CLS approach are particularly well-suited

for analysing the often large amounts of data collected by medical tests, obviating time-

consuming and expensive specialised investigations. The data generated by medical imag-

ing is, in particular, both very rich and difficult to analyse in an efficient, reproducible

manner. Machine learning solutions continues to be employed and further innovated for

the purpose of better understanding and extracting information from medical imaging

(Wernick et al., 2010).

Machine-learning systems for medical applications are preferably of high accuracy and

transparent to physicians in its methods, such that unexpected decisions are offered with

an explanation that a physician can choose to agree or disagree with (Kononenko, 2001).

The field of machine learning has given rise to a multitude of algorithms, and many of

them have been applied to various clinically relevant models of detection and prognosis.

Two families of machine learning that have been particularly important to the clinical

context will here be surveyed, namely instance-based and perceptron-based machine-

learning algorithms.
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1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

1.3.1 Instance-Based Algorithms & their Medical Applications

Instance-based learning (IBL) algorithms are machine-learning algorithms that compare

features from previous examples to unknown inputs to determine solutions. This is in

contrast to other machine-learning algorithm families that generate internal generalised

models of a problem-space.

Among IBL algorithms, the k-nearest neighbors (k-NN) and support vector machines

(SVMs) are notable for having been widely used for a wide gamut of medical applications.

The k-Nearest Neighbours Algorithm

First described by Fix & Hodges while at the US Air Force as a technical report in

1951, and later formalised by Cover & Hart, the k-NN algorithm is one of the early and

fundamental machine learning algorithms, and is used in countless applications today.

The k-NN classification algorithm begins with its training step, whereby an nF -

dimensional feature space is created, where nF is the number of features per trained

data point, all while keeping note of what class each data point in the training feature

space belongs to. Subsequent classification steps involves obtaining the features for the

unknown data and searching the feature-space generated in the training step for its k

nearest features in terms of Euclidean distance of the features, where k is an odd integer.

The unknown data is then classified as belonging to the same category as the majority

of the k nearest features.

Considered a “lazy” machine learning algorithm, k-NN defers heavy computation from

the training stage, where no additional feature processing is required, to the classification

stage, which make use of memory-complex search algorithms. Data structures such as

k-dimensional (k-d) trees, however, can reduce the memory and computational complexity

of these searches (Otair, 2013). This, in turn, results in a reduction of time-complexity;

in the case of k-d trees, search is performed in O(log n) time on average.

The k-NN algorithm has long been used for the purpose of clinical diagnostics, with

early studies being applied to microcalcification detection systems for mammography,

classification of aggresivity of brain tumours, and diagnosis of pigmented skin lesions
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1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

(Dhawan et al., 1996; Decaestecker et al., 1997; Dreiseitl et al., 2001). Clinical diagnostic

tools based on k-NN classifiers continue to be studied, with innovation focused primarily

on algorithm performance and feature engineering (Dhahbi et al., 2015).

1.3.2 Perceptron-Based Algorithms & their Medical Applica-
tions

The perceptron has a rich and storied history in the field of artificial intelligence, beginning

with Rosenblatt’s first descriptions of the algorithm in 1957. At its root, the perceptron

is an algorithm to learn some linear binary classifier f(x). The linear classifier trained by

a perceptron takes a vector of inputs x = [x0, x1, . . . , xN ] and then computes a weighted

sum from a weight vector w = [w0, w1, . . . , wN ] and some arbitrary bias value b. Sums

greater than some threshold θ (typically, θ = 0), are classified as belonging to the first

category (f(x) = 0), or as belonging to the second (f(x) = 1). Alternatively expressed,

f(x) =


0 if

(
N∑
i=0

xi · wi

)
+ b < θ

1 if

(
N∑
i=0

xi · wi

)
+ b ≥ θ

Training of the perceptron occurs by optimising the weights, which is in turn achieved

by adding to the weight vector a correction value defined as the product of the difference

of the desired and observed values and the input vector. A learning rate η can be mul-

tiplied by the correction value to scale the corrections made to weights at each learning

step, preventing over-corrections. For an initial weight vector wt=0, whose elements are

initialised as zero or with random values, to be trained against a training input xtrain with

desired output d, we define a newly trained weight vector wt=1 as follows:

wt=1 = wt=0 + η (d− f (xtrain))xtrain

This weight optimisation is repeated until the weights converge. Perceptrons were met

with much enthusiasm, but Minsky & Papert’s landmark 1969 publication Perceptrons

outlined (among other limitations) the inability of perceptrons to solve problems that are

10



1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

not linearly-seperable, such as the exclusive-or (XOR) functions and the then infeasible

computational requirements demanded by complex perceptron models. The limitations

of perceptrons illustrated by Minsky & Papert and a period of depressed AI research

due to reduced funding and optimism regarding the promise of the field known as the

“AI Winter” resulted in perceptrons being largely ignored until the later description of

the backpropagation algorithm and the subsequent rise of multi-layer networks (Hendler,

2008).

Artificial Neural Networks

Artificial Neural Networks (ANNs) are systems that overcome the linearity limitations

of single-perceptron networks by connecting multiple “hidden” layers of perceptrons (i.e.:

multi-layer perceptron networks). The perceptrons that make up ANNs are renamed

“neurons” in this context and their connections, “synapses”. This new nomenclature is

in reference to the biological analogy of the nervous system from which ANNs were first

conceived (Kleene, 1956).

ANNs gained in popularity when Paul Werbos described a method for accelerating

ANN training through an algorithm for the backwards propagation of errors (backpropa-

gation) from the output layer through to the connected neurons of the network (Werbos,

1982). Hardware limitations, which Minsky & Papert had forewarned the field about in

Perceptrons, would continue to hamper their utility and adoption until advances in par-

allel computing, as well as in hardware in the form of graphics processing units (GPUs)

would significantly speed up ANN calculations (Simard et al., 2005; Luo et al., 2005).

ANN models have been described throughout the years to help predict breast can-

cer outcomes. A model described by Floyd et al. offered prognostic predictions given a

number of features radiologists observed after mammogram such as mass size and calci-

fication morphology (Figure 1.3) which slightly outperformed trained physicians (Floyd

et al., 1994). Another ANN model had been described which out-performed TNM staging

(a standard staging system which considers primary tumour size, lymph node status, and

metastasis) in predicting 5-year outcomes of breast cancer patients, given patient record
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1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

information (age, race, payment method, etc...) as well as clinical diagnostic information

(hormone status, necrosis, histological grade, etc...) (Burke et al., 1997).

Figure 1.3: Architecture of the ANN described by Floyd et al. (1994). Given data inter-
preted by radiologists from mamograms, this multi-layer network classified benign and
malignant tumours with accuracy rates that marginally outperformed trained physicians.

Convolutional Neural Networks

At the heart of an increasing amount of modern CADe/x solutions are the use of convolu-

tional neural networks (CNNs or ConvNets) (Cheng et al., 2016). ConvNets are artificial

neural networks that use many hidden layers that typically either apply convolutional or

pooling operations at each neuron.

This mix of convolutional and pooling layers was inspired by Hubel & Wiesel who

described what he called “simple” and “complex” cells in the visual cortexes of cats and

monkeys. Simple cells are stimulated by patterns observed within a specific receptive field

by separating the field into inhibitory and excitatory parts, comparable to the role which

convolutional layers play. Complex cells, however, have no such fields and responded to

stimulus on any part of the field. The behaviour of complex cells is here comparable to

pooling layers, which consolidates the output of a hidden layer so that it may be passed

on to a single neuron (Hubel & Wiesel, 1968; LeCun et al., 2010).

Models, such as most ConvNets, which make use of multiple hidden layers are de-
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1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

scribed as being “deep”, and have historically presented a significant computational chal-

lenge. An early landmark applications of ConvNets for image recognition, LeCun’s char-

acter recognition model saw much success but required then-impractical computing re-

sources to process images of resolutions much greater than 32× 32 pixels. Recent devel-

opments in general-purpose computing on graphics processing units (GPGPU), however,

have made ConvNets, whose use had previously been regarded as “unrealistic”, practical

for a wide-range of applications many years after their first conception (Simard et al.,

2005; Crick, 1989). An example of being able to expand on LeCun’s ConvNet architec-

ture due to advances in hardware, VGG16 is a sixteen weight-layer ConvNet architecture

(Figure 2.4) that has been engineered by (and named for) the Visual Geometry Group at

the University of Oxford and obtains robust accuracy rates in general image recognition

tasks (Simonyan & Zisserman, 2014). The VGG16 model has been shown to generalise

very well to a number of different datasets, and is particularly well suited for localisation

tasks, having been awarded first and second place in the classification & localisation task

of the ImageNet ILSVRC2014 contest (Russakovsky et al., 2015). This makes the use of

the VGG16 architecture well-suited for the function of localisation and classification of

medical imagery for the purpose of computational detection and diagnosis.

ConvNets have been successfully used to create very accurate models for the classifica-

tion of breast cancer lesions. Binary models for classifying benign and malignant lesions,

as well as multi-class models for distinguishing between multiple subtypes of breast le-

sions from H&E stained biopsy slides have established with very high (> 90%) accuracy

(Wei et al., 2017; Han et al., 2017). These models, however, are severely limited in that

they classify whole imaging fields as belonging to a single class. These approaches en-

tirely ignore the heterogeneous nature of breast lesions and are entirely “black-boxes” for

clinicians, offering no added dimensions of information and little understanding as to why

the model has interpreted a lesion the way it has. To mitigate this limitation, a classifier

would be required to identify, classify and annotate sub-regions that exhibit characteris-

tics of early lesions in medical images of breast biopsies; transparently offering insights

into the classifications being made. One such method to so is to generate localisation
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1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

annotations with the Gradient-weighted Class Activation Mapping algorithm.

Localisation-Augmented Visualisation of Convolutional Neural Network Us-
ing Grad-CAM

Recent work by Selvaraju et al. has made the interpretation of ConvNets much more clear

by visually annotating inputs with general localisations of objects identified by the model.

This technique, named Gradient-weighted Class Activation Mapping (Grad-CAM), can

produce heatmaps of areas within an input image that, according to a given ConvNet

model, are likely to belong to a given class. Grad-CAM is generalisable to most ConvNet

architectures, and does not require to be trained on example localisation annotations.

Grad-CAM has been since used for the dual purpose of localising classified regions and

better understanding differences between classes in practical applications ranging from

plant stress phenotyping to classifying colorectal polyps (Ghosal et al., 2017; Korbar

et al., 2017).

Transfer-Learning for Resource Efficient Training of Neural Networks

Two common limitations of adapting convolutional networks to domain-specific tasks

such as classifying medical imagery for computer-aided detection are the large dataset

and computational power requirements. These two limitations can be largely addressed by

the process of transfer learning, which uses an existing convolutional architecture that has

been previously trained (“pre-trained”) on a sufficiently generalised dataset appropriate

for the target task (Pan & Yang, 2010).The ImageNet ILSVRC2014 dataset is an example

of a widely-adopted, readily-available, and comprehensive general-purpose dataset that is

commonly the basis of pre-trained models used for transfer-learning image classification

tasks (Figure 2.3a) (Russakovsky et al., 2015).

Transfer learning has in-fact been used in a number of computer-aided detection,

ranging from thoraco-abdominal lymph node detection and interstitial lung disease clas-

sification from chest X-ray and CT scan imaging to classification of skin cancers from

dermatoscope imagery (Shin et al., 2016; Esteva et al., 2017).
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1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

Transfer learning uses the weights of the many hidden layers of the pre-trained net-

work. The last fully-connected layer of the network is removed from the architecture and

a new linear classifier for the network is trained on the new dataset using the pre-trained

hidden layers as features.

A limitation of transfer learning is that the later, more specialised, hidden layers

of the pre-trained network can lead to reduced accuracy of the model if the original

dataset the pre-trained layer was trained against is extremely different from the new

dataset. This challenge is usually met by an additional process known as fine-tuning,

which continues to train the hidden layers of the pre-trained network against the new

dataset using backpropagation (Yosinski et al., 2014).

1.3.3 Pattern-based Features for Classifying Medical Imaging

Features that attempt to quantify properties of patterns have long been studied for the

stated purpose of developing classifiers for medical imaging (Mangasarian et al., 1990;

Meyer-Baese, 2004).

Pattern detection is particularly applicable to classifying lesions from histology sec-

tions of breast tumours, where cell patterning is very significant. The observation that

early lesions exhibit distinct cell patterning unique to themselves are reported in the first

descriptions of hyperplasia and carcinoma in situ of both the mammary duct and lobules

by Page et al. (1982). The descriptions provided of the early lesion are strongly based

on cellular architecture and patterning; distinguishing, for example, ductal and lobular

carcinomas in situ (DCIS and LCIS) from atypical ductal and lobular hyperplasias (ADH

and ALH) by “...round, regular spacing” in the former and their absence in the latter,

sometimes exhibiting “...swirls or streaming” Page et al. (1982).

Gabor Filters as Texture Features

The Gabor filter is a powerful tool for calculating texture-based features from images

(Laine & Fan, 1993). The Gabor filter comes from a family of so-called “wavelet-

transforms”, which have been shown to model the manner in which simple cells of the
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1.3. MACHINE LEARNING AND THE MEDICAL CONTEXT

mammalian visual cortex are stimulated by edges in observed visual fields (Marĉelja,

1980). Gabor filters have a number of parameters, such as orientation and bandwidth,

that allow them to discriminate between textures differently. Applying the Gabor filter

to an image at various resolutions and with sever filter orientation parameters has been

shown to produce the best results when discriminating between textures (Unser, 1995).

The following thesis describes two models, the PPReCOGG model and the DeepDuct

model, which are machine learning models that address the issue of intratumour hetero-

geneity by classifying subregions within histopathological sections of biopsies of breast

lesions.

A model for the per-pixel recognition of cancers using oriented Gabors on the GPU,

PPReCOGG uses the k-nearest neighbours algorithm to produce high-resolution annota-

tions of diagnostically-relevant cell patterning using texture-based features. The PPRe-

COGG model achieves a robust rate of accuracy with an average of≈ 94.3% of pixels being

correctly classified on synthetic validation classification tasks, and also is demonstrated

to effectively identify sub-regions exhibiting characteristic neoplastic cell patterning in

images of human early breast lesions.

The DeepDuct model uses a pre-trained deep convolutional neural network model

(namely, VGG16) fine-tuned on a dataset comprised of histological images of breast biop-

sies classified across eight different lesion types (the BreakHis dataset, Figure 2.3b), and

combines it with the Grad-CAM algorithm to provide general localisation of the various

lesions identified, while providing an opportunity to better understand the model.
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2. Design & Methods

2.1 PPReCOGG Model

2.1.1 PPReCOGG Model Design

The PPReCOGG model is a k -nearest-neighbours (k -NN) trained on Gabor features

extracted from human breast tumour tissue stained immunofluorescently for E-cadherin.

Gabor features were extracted in a similar fashion as Melendez et al. (2008) and is

described by Figure 2.1. Namely, for each pixel in an image, six windows of increasing

size (3 × 3, 5 × 5, 9 × 9, 17 × 17, 33 × 33, 65 × 65) centred on the pixel are defined.

Each window is then filtered through four Gabor kernels with quarter-turn orientations

(i.e.: θ =
{

1
2
π, π, 3

2
π, 2π

}
). Each Gabor kernel also has a sinusoidal wavelength of 0.25

pixels (λ = 0.25), which has been previously described as providing good discrimination

in general-purpose texture classification (Manjunath & Ma, 1996).

The mean and the standard deviation of the resulting Gabor energies are then added

to a vector for the relevant pixel. This results in a total of 48 features per pixel (6 windows

× 4 orientations × [1 mean + 1 standard deviation] = 48 feature per pixel).

Gabor feature vectors extracted from the unknown image (iu) are classified according

to a known set of classes C = {ADH,DCIS} extracted from images that are representative

of these known classes (IC = {IADH , IDCIS}), as illustrated in Figure 2.2. Classification

was performed using the k-NN algorithm.

2.1.2 Software Dependencies

The implementation of the k-NN algorithm by the Scikit-Learn (sklearn) python library

was used for the purpose of classifying pixels (Pedregosa et al., 2011). Multidimensional

Scaling was also implemented by sklearn. Gabor kernels were generated by the OpenCV
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2.1. PPRECOGG MODEL

library via python language-bindings (Bradski, 2000) and convolved against the extracted

windows on the GPU using the Theano library (Al-Rfou et al., 2016). Training and

classification tasks were performed on consumer hardware with an nVIDIA GTX 1050M

GPU and Intel i7-7700HQ CPU with stock 2.8 GHz clockspeed.

Three-dimensional plots depicted in Figure 3.1 were generated using the Plot.ly python

bindings from Plotly Technologies Inc. (2015). Accuracy and classification plots were cre-

ated with the matplotlib python library (Hunter, 2007).

2.1.3 Datasets

Brodatz textures were obtained from “Textures a photographic album for artists and de-

signers” (Brodatz, 1966).

Human sample tissue was provided by Dr. Atilla Omeroglu in accordance with the

guidelines of the McGill Institutional Review Board (IRB; A03-M24-15A) and immunoflu-

orescently labelled by Ruba Halaoui as described in (Halaoui et al., 2017).

2.1.4 Software and Data Availability

The software and documentation for the PPReCOGG model is available at:

https://github.com/jszym/pprecogg/
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2.1. PPRECOGG MODEL

To reduce computational complexity, images are resized to a resolution of 256 × 256

pixels. Computation time of training is further reduced by extracting the features of a

random sampling of one-quarter of the population of pixels (i.e.: For an N × N image

where N = 256, bN2/4c = 16, 384 pixels) from the total population .

IADH

IDCIS

N px x N px

N px x N px

1. Extract Gabor Energy Features

[μ1... μ24 , σ1... σ24 ]1

[μ1... μ24 , σ1... σ24 ]
...

N2/4

[μ1... μ24 , σ1... σ24 ]1

[μ1... μ24 , σ1... σ24 ]
...

N2/4

IU

[μ1... μ24 , σ1... σ24 ]1
...

k-NN

2. Classify IU  according to
   IADH  & IDCIS  using k-NN
    

3. Visualise classified pixels.    

[μ1... μ24 , σ1... σ24 ] N2/4

Figure 2.2: Schematic overview of the PPReCOGG model, wherein Gabor features are
extracted from images of known classes (IADH , IDCIS), as well as an image with regions
belonging to different classes (IU). Pixels are classified according to the class of their
Gabor features, which are classified using the k-NN algorithm.
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2.2. DEEPDUCT MODEL

2.2 DeepDuct Model

2.2.1 Model Design

The DeepDuct model begins with a so-called“off-the-shelf”ConvNet architecture; namely

the VGG16 model pre-trained on the general-purpose ImageNet dataset (Simonyan &

Zisserman, 2014; Deng et al., 2009; Russakovsky et al., 2015). The pre-trained VGG16

model was fine-tuned on the BreakHis dataset, a dataset comprised of approximately 8,000

images of H&E stained human mammary biopsy sections classified according to World

Health Organisation (WHO) guidelines (Spanhol et al., 2016; Sunil R. Lakhani, 2012).

Abbreviations for the class names present in the BreakHis dataset are used throughout

this manuscript, and within the model itself. Refer to Appendix A for a legend of these

class codes.

2.2.2 Software Dependencies

The VGG16 model was implemented with Keras using TensorFlow as the back-end (Chol-

let et al., 2015; Abadi et al., 2016). A Keras/TensorFlow implementation of Grad-CAM

implemented in the Keras-Vis library was used to generate attention maps from the

BreakHis-trained VGG16 model (Kotikalapudi & contributors, 2017).

Plots created with the matplotlib and searborn libraries (Hunter, 2007; Waskom et al.,

2014).
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2.2. DEEPDUCT MODEL

Figure 2.3: Examples from the ImageNet and BreakHis Datasets

ImageNet

“Newspaper”

“Building”

“Child”

“Adenosis (Benign)”

“Ductal Carcinoma (Malignant)”

BreakHis

“Lobular Carcinoma (Malignant)”

(a) (b)

Legend — Thumbnails from some selected classes of the (a) ImageNet and (b) BreakHis
datasets. The DeepDuct model makes use of a ConvNet model pre-trained on the Ima-
geNet dataset and repurposed for classifying images according to the BreakHis dataset
via transfer learning. The ImageNet ILSVRC2014 dataset is comprised of ≈ 150, 000
images belonging to 1,000 classes, and the BreakHis dataset is comprised of 8,000 images
belonging to 8 classes.
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2.2. DEEPDUCT MODEL

Figure 2.4: Schematic of the VGG16 ConvNet Architecture and its Fine-Tuning

Input Image (224 x 224 x 3)

3x3 Conv. Layer, 64 Features (224 x 224 x 64)

3x3 Conv. Layer, 128 Features (112 x 112 x 128)

3x3 Conv. Layer, 256 Features (56 x 56 x 256)

3x3 Conv. Layer, 512 Features (14 x 14 x 512)

Max Pooling (Stride of 2)

Fully Connected Layer (4096)

Fully Connected Layer (1000)

Softmax Classi�er

etc...

Pre-Trained
ImageNet

Model
(1,000 Classes)

(a) Frozen Convolutional Blocks (b) Fine-Tune
Pre-Trained 

Layers

(c) Fine-Tune
New

Fully-Connected
Layers

Block 1

1-1 1-2

Block 2

2-1 2-2 3-1 3-2 4-1 4-2 5-25-1

Block 3 Block 4 Block 5

Newspaper

Building

Child

etc...

Ductal
Carcinoma

Lobular
Carcinmoa

Adenosis

Fine-Tuned
BreakHis

Model
(8 Classes)

Legend — The VGG16 model is comprised of 16 weight layers, making up five convolu-
tional blocks and a fully-connected classifier. Fine-tuning a pre-trained VGG16 model
involves freezing the first four blocks (a), continuing to train the fifth block (b) against
the new dataset (in this case, BreakHis) through backpropagation, and finally training a
new fully-connected classifier against the new dataset (c).
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3. Results

3.1 PPReCOGG: A Model for the Per-Pixel Classi-

fication of Early Breast Lesions via Gabor Fea-

tures

3.1.1 PPReCOGG Classifies Sub-Regions of Perceptibly Dis-
tinct Textures in Synthetic Benchmarks

To assess the baseline ability of the PPReCOGG model to distinguish natural patterns

from one-another, the PPReCOGG model was trained and benchmarked against the Bro-

datz textures (namely the “Raffia” and “Brick” textures) compiled in the USC-SIPI image

dataset, which is a common image dataset used in the evaluation of image processing

and texture recognition community (Weber, 1997). The brick and raffia textures were

selected as they are visually distinct, and test images comprised of sub-regions of the two

are perceptibly distinct upon visual inspection (Table 3.1a).

Multidimensional scaling (MDS) embeddings allow us to project the forty-eight-dimensional

Gabor energy features calculated from the Brick and Raffia Brodatz textures onto three

dimensions (Figure 3.1a). These feature embeddings reveal that while they intersect, the

feature space is divided into two distinct planes, each belonging to one of the two classes.

The PPReCOGG model achieved high average accuracy rates of 90% in benchmarks

consisting of the Raffia and Brick Wall Brodatz textures (Table 3.1 ).
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3.1. PPRECOGG: A MODEL FOR THE PER-PIXEL CLASSIFICATION OF
EARLY BREAST LESIONS VIA GABOR FEATURES

Figure 3.1: MDS Embedding of Gabor Energy Features from Brodatz and Early Human
Breast Lesion Datasets

(a) (b)

Ra�ia
Brick

DCIS
ADH

Legend — Three-dimensional multidimensional scaling (MDS) embedding of Gabor en-
ergy features from known classes of the (a) Brodatz dataset and (b) the early human
breast lesion dataset.
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3.1. PPRECOGG: A MODEL FOR THE PER-PIXEL CLASSIFICATION OF
EARLY BREAST LESIONS VIA GABOR FEATURES

Table 3.1: Accuracy of the PPReCOGG Model Trained on Brodatz Textures

Test Image

One

Test Image

Two

Test Image

Three

(a)
Original

Test Image

(b)
Ground

Truth

(c)
Classified

Image

(d)

Raffia

Accuracy

Map

(e)

Brick

Accuracy

Map

(f) Accuracy 90.94% 85.29% 94.00%

Legend — (a) Test images comprised of composites of the Brodatz textures entitled
“Raffia” (pg. D84) and “Brick Wall” (pg. D94). (b) The ideal classification (or “ground
truth”) of the original test image, where black pixels code for the raffia texture and white
codes for the brick texture. (c) A random sampling of pixels classified by the PPReCOGG
model. Pixels classified as Raffia are coded by blue points, and and pixels classified as
Brick are coded by orange pixels. (d) and (e) Classified pixels are here compared to and
overlayed on their ground truth. Pixels which are correctly classified are coded in green,
while false-positives are coded in red. (f) Accuracy of the model, as calculated by the
quotient of the number of correctly classified pixels and the total number of classified
pixels.
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3.1.2 PPReCOGG Classifies Sub-Regions of Different Neoplas-
tic Phenotypes in Synthetic Benchmarks with High Ac-
curacy

Similar benchmarks were performed on test patterns composed of images of early lesions

(ADH and DCIS) from human patient samples which had been immunofluorescently

labelled for E-cadherin. These synthetic benchmarks are meant to simulate and quanti-

tatively measure the efficiency of the PPReCOGG model in the task of classifying whole

fields into sub-regions which exhibit cell patterning characteristic to certain early lesions.

MDS embeddings of the 48-dimensional Gabor energy features for the human samples

reveal results very similar to the embeddings of the features of the Brodatz textures; two

distinct but intersecting planes (Figure 3.1b).

The PPReCOGG model achieved high accuracy rates on the human lesion bench-

marks, achieving an accuracies ranging from 93.17% to 96.00% across all test images

(Table 3.2 ).

3.1.3 PPReCOGG Effectively Classifies Sub-Regions of Differ-
ent Neoplastic Phenotypes in Human Biopsy Samples

PPReCOGG model trained on E-cadhering patterning found in early breast lesion phe-

notypes (same features as those used in §3.1.2, see Figure 3.2a). This model was sub-

sequently used to classify the pixels in images of early human breast lesions in with

E-cadherin had been immunofluorescently labelled (Figure 3.2b). PPReCOGG effectively

classifies sub-regions within the image that exhibit different cell-patterning characteristi-

cally found in early lesions.
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Table 3.2: Accuracy of the PPReCOGG Model Trained on Textures Derived from
E-cadherin Staining of Human Lesions

Test Image

One

Test Image

Two

Test Image

Three

(a)
Original

Test Image

(b)
Ground

Truth

(c)
Classified

Image

(d)

Hyperplasia

Accuracy

Map

(e)

Carcinoma

Accuracy

Map

(f) Accuracy 93.17% 93.60% 96.00%

Legend — (a) Test images comprised of composites of textures derived from E-cadherin
staining of human lesions exhibiting characteristic hyperplastic or carcinomic cell pat-
terning. (b) The ideal classification (or “ground truth”) of the original test image, where
black pixels code for the hyperplastic texture and white codes for the carcinomic texture.
(c) A random sampling of pixels classified by the PPReCOGG model. Pixels classified as
hyperplasia are coded by blue points, and and pixels classified as carcinoma are coded by
orange pixels. (d) and (e) Classified pixels are here compared to and overlayed on their
ground truth. Pixels which are correctly classified are coded in green, while false-positives
are coded in red. (f) Accuracy of the model, as calculated by the quotient of the number
of correctly classified pixels and the total number of classified pixels.
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Figure 3.2: Human Lesions as Classified by the PPReCOGG Model

Original Image PPReCOGG Classi�ed Image

Hyperplasia Carcinoma Background

Training Data(a)

(b)

Legend — Sections of human breast biopsies were immunofluorescently stained for E-
cadherin and classified using the PPReCOGG model trained on two different early trans-
formed phenotypes, and one background control. (a) Three representative fields of the
512 pixel by 512 pixel images used to train the PPReCOGG model. (b) Fields of
breast E-cadherin labelled human breast lesion (left column) were classified by the trained
PPReCOGG model (right column). Blue and orange pixels are classified as belonging to
a hyperplastic carcinomic regions, respectively. Green pixels are classified as background
signal.
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3.2 DeepDuct: A Deep-Learning Approach to Re-

gional Breast Cancer Classification using Grad-

CAM

3.2.1 Accurate Classification of Breast Neoplasms in the BreakHis
Dataset

Transfer-learning the VGG16 on the unmodified BreakHis dataset results in acceptable

overall classification accuracy (70%), however closer inspection reveals bias towards one

of the classes (ductal carcinoma) due to imbalances in the number of examples between

classes (Figure 3.3a). Oversampling the dataset such that all classes have an equal

number of training examples resulted in a small improvement in overall classification

accuracy (72%), and shows a demonstrable reduction in bias (Figure 3.3b).

Notably, lobular carcinomas were mistaken for ductal carcinomas in just over two-

thirds of the validation set, and correctly identified a quarter of lobular carcinoma ex-

amples. Outside the sampling bias, possible explanations for this high false-positive rate

include the morphological similarity between the two lesions (lobular carcinomas typically

exhibit rounder cells), as well as the low resolution of the dataset, which can degrade visual

information of subtle differences. After oversampling the BreakHis dataset, the accuracy

and ductal carcinoma false-positive rates have nearly replaced one another, with lobular

carcinomas being correctly classified in 63% of cases and false ductal carcinoma classi-

fications in a quarter of cases. Ductal carcinoma false-positives were in fact halved, on

average, across nearly all classes after oversampling.

3.2.2 Activation Mapping of BreakHis ConvNet using Grad-CAM

The Grad-CAM algorithm was used to compute class activation maps from the BreakHis

fine-tuned VGG16 ConvNet model (Figure 3.4). In some cases, regions containing arte-

facts are highly activated and coincide with high-certainty (i.e.: high predicted probabil-

ity) false-positives (Figure 3.4e). It is also not uncommon for low-certainty false-positives

to be activated by similar regions across classes (Figure 3.4f ). Curiously, in many cases
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correct predictions are made that are largely activated by the stroma, rather than the

epithelium (Figure 3.4c).
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Figure 3.3: Confusion Matrix of VGG16 Model Trained on the Original and Oversampled
BreakHis Datasets

Confusion Matrix of
Model Trained on Original Dataset

Confusion Matrix of
Model Trained on Oversampled Dataset
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Legend — Confusion matrices of the VGG16 model either trained on (a) the original
BreakHis dataset as provided by its creators, or (b) a modified version of the BreakHis
dataset oversampled such that each class has the same number of training examples.
The model trained on the original dataset achieved an average accuracy of 70% on the
validation set across all classes, while the oversampled model saw a modest increase for a
final average accuracy of 72%. See Appendix A for class code legend used in this figure.
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Figure 3.4: Activation Maps of the BreakHis Fine-Tuned VGG16 ConvNet
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Legend — Selected examples of activation maps of the BreakHis fine-tuned VGG16 model
described herein, as calculated by the Grad-CAM algorithm. See Appendix A for a legend
of class abbreviations. Column (i) displays the original input image and its ground
truth classification. Column (ii) shows the top three predictions of the ConvNet and
their activation maps overlayed on the input image; as well as the probability of the
classification as reported by the model’s softmax layer (shown in brackets). Column (iii)
reports the probabilities of the top three predictions in a bar chart. Top probabilities are
indicated with a checkmark (3) when they match the ground truth (correct classification),
and an“x”mark (7) when they do not (false-positives). Rows (a–c) are examples of correct
classifications made by the ConvNet model where the top prediction is of high probability.
Rows (d–e) are examples of incorrect classification made by the ConvNet model where
the top prediction is of high probability (false-positives). Row (f) is an example of an
incorrect classification where none of the classes are reported to be of high-probability.
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4. Discussion

The subjective nature of interpretting histopathology, inter-observer disagreement, and

reportedly difficult to distinguish early lesions have nescessitated reliably replicatable

quantitative methods. Previously proposed automated solutions typically ignore tumour

heterogeneity and/or are opaque, so-called“black-box”solutions which make them unsuit-

able for making clinical decisions. The PPReCOGG model, which implements per-pixel

texture-based tissue classification, and the DeepDuct model, which leverage a pre-trained

ConvNet and class-activation mapping to generate transparent regional classifications,

address the aforementioned hurtles faced by previously described systems for automated

diagnosis with the aim of demonstrating how clinically relevant models for automated

diagnosis can be realised.

4.1 Robust Regional Diagnosis with PPReCOGG

The PPReCOGG model can effectively recognise sub-regions of cell patterning in im-

munofluorescent confocal imagery, provided a training set that exemplifies said patterns.

The PPReCOGG model has been employed the task of identifying, within images of

human breast lesions, cell patterns that are characteristic of early breast lesions. PPRe-

COGG classification in this task is effective and, thanks to its GPU accelerated imple-

mentation, performed in a practical time-frame.

4.1.1 Model Performance

The performance of the PPReCOGG model on the Brodatz texture synthetic benchmark

attest to the models proficiency at texture recognition tasks between textures that are

easily distinguished by human observers upon casual visual inspection (Table 3.1 ). The

accuracy of the PPReCOGG model on the Brodatz dataset is comparable to a similar
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4.1. ROBUST REGIONAL DIAGNOSIS WITH PPRECOGG

general-purpose k-NN texture segmentation model based on Gabor features described

by Melendez et al. (2008), which achieved an average accuracy of ≈ 90% across their

synthetic Brodatz benchmarks. Distinguishing the two models is PPReCOGGs GPU ac-

celeration, which allows the model to classify far larger resolution images on inexpensive

hardware when compared to the Melendez et al. model (512× 512 pixels versus 32× 32

pixels). PPReCOGG can be easily scaled to far higher resolutions with high-end GPUs.

PPReCOGGs true utility, however, is most clearly evinced in the human breast lesion

synthetic benchmarks, whereby texture recognition was performed on the test images

(Table 3.2a) after being trained on a dataset of human lesions. In these visually chal-

lenging tasks, PPReCOGG’s accuracy is equal to or greater than those observed in the

visually distinct Brodatz texture benchmarks.

A partial explanation for PPReCOGGs efficiency in both visually distinct and vi-

sually challenging texture recognition tasks is provided by the MDS embeddings of the

underlying Gabor features of the training set for both the Brodatz and Human Breast

Lesion datasets. The MDS embedding of both datasets are remarkably similar, with

both classes in each case forming distinct but intersecting planes when scaled to three-

dimensional space (Figure 3.1). The distance between the feature-spaces of each class

defines the degree to which it is possible for PPReCOGG to distinguish between them.

This is largely due to PPReCOGGs reliance on the k-nearest neighbour algorithm for the

classification of features.

4.1.2 Future Directions

While the PPReCOGG model readily recognises textural sub-regions within clinical sam-

ples, any clinical utility of the PPReCOGG model is dependent on and currently precluded

by an immature and incomplete training set. In order for the PPReCOGG model to offer

meaningful interpretation and classification of early lesions, a rich dataset is required to

capture the many textural manifestations of early lesions. ADH and DCIS lesions are not

homogenously or universally comprised of single textures, and so a sufficiently large and

comprehensive dataset is required before the PPReCOGG model can be used to identify
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the many faces of early breast lesions.

In addition to a complete training dataset, it is possible to extend the current model

to recognise sub-regions according to the identity of neighbouring sub-regions; such that

some sub-region identified as belonging to some texture class A would only be reported

as belonging to sub-type X if neighbouring regions belong to some texture class B but

not C. Rule-sets for these contextual classifications can be learned through random-forest

models trained on annotated images, manually according to existing pathology guidelines,

or some combination of the two.

The underlying conventional machine-learning algorithm that is the basis of the PPReCOGG

model does shape the nature of the conclusions that can be drawn from its output.

Namely, the PPReCOGG model is a manifestation of our current understanding of the

histopathology of early breast lesions. While this approach results in highly desirable

and much needed quantitative and reproducible interpretation of the pathology of biopsy

tissue, PPReCOGG as a consequence does not implement feature learning. This is in

contrast to models based on neural network algorithms, which forego feature engineer-

ing for hidden layers which discover them independently through optimisation. Careful

inspection of the hidden layers of the neural network can potentially lead to understand-

ing of early lesion pathology interpretation previously overlooked or otherwise unknown,

however such interpretation is nuanced and often provide incomplete “snapshots” of the

internal state of the network (Erhan et al., 2010; Zeiler & Fergus, 2013). The DeepDuct

model was designed with these concerns in mind.

4.2 DeepDuct as a Model Transparent Regional Clas-

sifier

The DeepDuct model described herein provides a proof-of-concept framework for the

localisation of breast lesions from H&E staining that does not rely on manual feature

selection, transparently reports explanations for its predictions via class activation maps

and allows for the potential discovery of new features that could inform future manual

diagnosis.
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Neural networks have the advantage of dynamically“learning”and optimising features,

as opposed to relying on a manual process of feature engineering that is often driven by

limited powers of intuition and conventional knowledge. The automated process of feature

engineering allows for the potential discovery of new underlying concepts previously not

described in the literature that fundamentally define a class from others, and also prevents

assumptions and misconceptions from biasing features and the resulting inaccuracies.

4.2.1 Explanations for Neural Network Predictions are Essen-
tial for Clinical Use of CADe/x Models

Whole-image ConvNet classification models fine-tuned on the BreakHis dataset have been

previously described reporting high-accuracy, as well as patch-based whole-slide classifiers

which apply whole-image classification to small patches of an imaged slide resulting, in a

form of tumour localisation (Han et al., 2017; Wang et al., 2016). None of these models,

however, offer the same extent of transparency and resolution offered by the activation

maps provided by the Grad-CAM algorithm used in the DeepDuct model. Existing

models of breast lesion classification and localisation remain “black-box” solutions to

end-users, particularly those without in-depth knowledge of deep learning algorithms.

Unique among deep-learning based breast lesion classifiers, DeepDuct reports which

regions of the input image have lead the model to classify the image as it had. This

simultaneously allows for general localisation of classified objects and a glimpse into the

internal state of the model, informing and not prescribing a diagnosis. This transparency

is essential for a model to see use in contexts such as clinical settings where acting

on predictions in blind faith is not an option due to the high-risk associated with the

decisions being made. Models that implement “explanations” for their predictions have

indeed been shown to increase end-user trust in model predictions, as well as help identify

false-positive predictions made by a given model (Ribeiro et al., 2016). To the author’s

understanding, DeepDuct is the first application of such explanatory algorithms to the

classification and localisation of breast lesions from medical imaging.

38



4.2. DEEPDUCT AS A MODEL TRANSPARENT REGIONAL CLASSIFIER

4.2.2 Dataset Considerations

The BreakHis dataset, while covering a number of relevant lesion types with a significantly

large number of examples for each type, presents some important challenges. Firstly,

despite the multiple magnifications provided, images in the BreakHis dataset are not of

high-resolution, taken with a digital camera with pixel size of 6.5µm and resolution of 480

TV lines. Secondly, the number of examples is extremely imbalanced between classes,

with as much of a 7.5-fold difference between the least represented class and the most

represented class.

While low-resolution images can be useful for learning so-called “global features”,

they’ve proven to be problematic when distinguishing differences between objects with

similar high-level features, as is the case between two H&E images exhibiting different

lesion subtypes. This problem is illustrated well in the description of Baidu’s Deep Image

model, whereby similar objects (such as insects of the same species) can only be dis-

tinguished from one another when higher-resolution images are considered in the model

(Wu et al., 2015). Training the DeepDuct model on higher resolution datasets would

address this concern. High-resolution datasets of breast lesions do exist, but many offer

too few examples (INESCTC) or do not offer histological type information outside grade

(CAMELYON16).

As described early, imbalances in the number of examples provided per class in the

BreakHis dataset had lead to a strong bias towards over-represented classes (Figure 3.3a).

This bias was addressed by oversampling all under-represented classes by duplicating

examples until all classes in the training set contained the same number of examples

(Figure 3.3b).

4.2.3 Future Directions & Improvements

Implementing the DeepDuct model on smartphones and tablets would afford clinicians

low-cost, mobile tools for the annotated classification of breast histology slides through

use of commercial or 3D-printable smartphone-microscope adapters (Roy et al., 2014).

A less computationally-complex mobile DeepDuct implementation would be required to
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account for the limited resources available on the platform. This is typically achieved

either by a networked server-client model supported by computation in the cloud, or by

replacing the deep, resource-heavy VGG16 model with a more shallow mobile-oriented

model such as SqueezeNet (Iandola et al., 2016). While the former is limited by patient-

privacy compliance and network connectivity, the latter requires retraining the network

on a shallower ConvNet architecture with potential losses in accuracy.

Regional convolutional neural networks (R-CNNs), such as Facebook’s Mask R-CNN,

have been developed to provide pixel-resolution object detection in complex scenes (He

et al., 2017). Using a Mask R-CNN model trained on a breast lesion dataset can provide

higher resolution lesion detection than existing patch-based breast lesion models (Wang

et al., 2016).
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Marĉelja, S. 1980. Mathematical description of the responses of simple cortical cells*.

JOSA, 70(11), 1297–1300.

Masood, Shahla, & Rosa, Marilin. 2011. Borderline Breast Lesions: Diagnostic Challenges

and Clinical Implications. Advances in Anatomic Pathology, 18(3), 190–198.

Melendez, Jaime, Garcia, Miguel Angel, & Puig, Domenec. 2008. Efficient distance-

based per-pixel texture classification with Gabor wavelet filters. Pattern Analysis and

Applications, 11(3–4), 365–372.

45



BIBLIOGRAPHY

Meyer-Baese, Anke. 2004. Pattern recognition for medical imaging. Academic Press.

Minsky, Marvin, & Papert, Seymour. 1969. Perceptrons. Perceptrons. M.I.T. Press.

Mommers, Ellen C.M., Page, David L., Dupont, William D., Schuyler, Peggy, Leon-

hart, Angelique M., Baak, Jan P.A., Meijer, Chris J.L.M., & Van Diest, Paul J. 2001.

Prognostic value of morphometry in patients with normal breast tissue or usual ductal

hyperplasia of the breast. International Journal of Cancer, 95(5), 282–285.

Narod, Steven A., Iqbal, Javaid, Giannakeas, Vasily, Sopik, Victoria, & Sun, Ping. 2015.

Breast Cancer Mortality After a Diagnosis of Ductal Carcinoma In Situ. JAMA On-

cology, 1(7), 888–896.

National Comprehensive Cancer Network. 2017 (June). Breast Cancer Screening and

Diagnosis. Tech. rept. 1.2017.

National Institutes of Health. 2010. Breast Cancer Basics and You: Introduction. NIH

MedlinePlus, 5(2), 17.

Nothacker, Monika, Duda, Volker, Hahn, Markus, Warm, Mathias, Degenhardt,

Friedrich, Madjar, Helmut, Weinbrenner, Susanne, & Albert, Ute-Susann. 2009. Early

detection of breast cancer: benefits and risks of supplemental breast ultrasound in

asymptomatic women with mammographically dense breast tissue. A systematic re-

view. BMC Cancer, 9(Sep), 335.

O’Connell, Peter, Pekkel, Vladimir, Fuqua, Suzanne, Osborne, C. Kent, & Allred,

D. Craig. 1994. Molecular genetic studies of early breast cancer evolution. Breast

Cancer Research and Treatment, 32(1), 5–12.

Otair, Dr Mohammed. 2013. Approximate k-nearest neighbour based spatial clustering

using k-d tree. arXiv:1303.1951 [cs], Mar. arXiv: 1303.1951.

Page, David L, Dupont, William D, Rogers, LW, & Rados, MS. 1959. Atypical hyper-

plastic lesions of the female breast. A long-term follow-up study. Cancer.

Page, David L., Dupont, William D., Rogers, Lowell W., & Landenberger, Marie. 1982. In-

traductal carcinoma of the breast: Follow-up after biopsy only. Cancer, 49(4), 751–758.

Pan, S. J., & Yang, Q. 2010. A Survey on Transfer Learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10), 1345–1359.
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Appendix A: BreakHis Class Codes

and Abbreviations

Abbreviations for the class names present in the BreakHis dataset are used throughout

this manuscript, and within the model itself. These class names refer to the breast lesion

types outlined in the WHO guidelines for the classification of breast tumours (Sunil

R. Lakhani, 2012).

Benign Tumours

B_AD Benign Adenosis

B_FA Benign Fibroadenoma

B_TA Benign Tubular Adenoma

B_PT Benign Phylodes Tumour

Malignant Tumours

M_DC Malignant Ductal Carcinoma

M_LC Malignant Lobular Carcinoma

M_MC Malignant Mucinous Carcinoma

M_PC Malignant Papillary Carcinoma
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Appendix B: Licensing Information

The text of this document, as well as Figures 1.2, 2.1, 2.2, 2.4, 3.1, 3.2, 3.3 and Table

3.2 are released under the Creative Commons Attribution 4.0 International License. At-
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