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Background: Protein-Protein Interactions

* Bio'l processes as an undirected graph of ™ An incomplete modet,
PPI but it’'s gotten us pretty far.
S.

||Edgell
Protein==———\D|ote1n

"Node" "Node"

sl

Emade
COMBINE (a4




Background: Protein-Protein Interactions
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Background: Protein-Protein Interactions

* Protein interactions are typically identified

through “wet lab” experiments.

* These experiments typically:

Take days/weeks.
Expensive reagents.
Often produce a lot of plastic waste.

Are quite definitive.
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Background: Protein-Protein Interactions

* Predicting protein interactions using
computational models try to address some

of the trade-offs of lab experiments.

Take seconds/minutes.

Low-to-no cost.

Consume electricity and produces e-waste.

Tz D\\

L = ’("ﬁcf é‘@

Emade
COMBINE (a4

Not yet definitive.




Background: Protein-Protein Interactions

Given two proteins, do
they interact?

Protein= > ™Protein
A B
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Background: Protein-Protein Interactions

AUROC on H. sapiens

Legend

Tr Te

T T i Training

C1 / “ | / "” : :rot.em
- o ] t

Tr Tr Te Te T8 protein

= Training
Edge

="' Testing
Edge

sl

Park, Y. & Marcotte, E. M. (2012). COMBINE (ab




Background: Protein-Protein Interactions

AUROC on H. sapiens
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Background: Protein-Protein Interactions

AUROC on H. sapiens
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Background: Protein-Protein Interactions

AUROC on H. sapiens
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Background: Protein-Protein Interactions

AUROC on H. sapiens
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Background: Protein-Protein Interactions

AUROC on H. sapiens
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The Problem?

* It’s hard to plug data leaks in PPI datasets.

* Many models depend on these leaks for
their performance.

* How do we plug the leak?
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Introducing (@'\5"_4’_3

Regularised Automatic Prediction
of Protein-Protein Interactions
using Deep Learning

Joseph Szymborski, Amin Emad, RAPPPID: Towards Generalisable
Protein Interaction Prediction with AWD-LSTM Twin Networks,
Bioinformatics, 2022; btac429,
https://doi.org/10.1093/bioinformatics/btac429
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RAPPPID Architecture

10

’ Protein A Protein B
¢ MAHAGRTGA GHK
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RAPPPID Architecture

Protein A Protein B
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RAPPPID Architecture
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RAPPPID Architecture

10
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What makes RAPPPID different?

* In short, lots of regularisation
- AWD-LSTM
— Embedding dropout
— Ranger21 Optimiser
— Stochastic Weight Averaging (SWA)
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1

What makes RAPPPID different?

* In short, lots of regularisation

- AWD-LSTM

— Embedding dropout

— Ranger21 Optimiser

— Stochastic Weight Averaging (SWA)
e Also

— Sentencepiece tokenisation
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Regularising Recurrent Networks
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Regularising Recurrent Networks

Dropout Dropconnect
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Regularising Recurrent Networks

Dropout Dropconnect Embedding Dropout
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Stochastic Weight Averaging (SWA)

* Very similar to Averaged Stochastic Gradient Descent but keeps a pair of
weights:

— One that the optimiser minimises (w).

- Another that is a running average of the previous weight (w,, ).

Test error (%) Train loss Test error (%)

" N ™~ )
wSWA : andelS —|_ w r e B . WS‘.GD
WswA < i N A

Nmodels + 1 Wl. 3

epochs. Please see [ 1] for details on how these figures were constructed.
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How does RAPPPID perform?

14

True-Positive Rate

Receiver Operator Curve (C1)
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How does RAPPPID perform?
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How does RAPPPID perform?
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RAPPPID performance vs. data providence

Results from an ablation study conducted on RAPPPID. Each model is

trained/tested twice on three randomly generated C3 datasets. The performance metrics
correspond to held-out test sets.

RAPPPID | RAPPPID RAPPPID + Adam RAPPPID- RAPPPID- RAPPPID RAPPPID
(original) -SWA AWD SentencePiece | +TransfLG | +TransfSM
Test 0.792 0.782 0.791 0.762 0.749 0.670 0.747
AUROC | (+0.007) | (+0.007) (+0.025) (+0.020) (+0.009) (+0.030) (+0.026)
AUROC
Diff N/A -1.20% -0.100% -3.70% -5.37% -15.3% -5.68%
Test 0.794 0.783 0.792 0.757 0.748 0.686 0.758
APR (+0.009) | (+0.007) (+0.032) (+0.022) (+0.011) (+0.040) (+0.025)
APR
Diff N/A -1.37% -0.273% -4.62% -5.85% -13.6% -4.61%
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Transfer Learning on X-Ray Crystallography Data

* BioLIP dataset: semi-curated dataset of Protein/Ligand interactions based on the PDB

* We pretrain on STRINGDB, then fine-tune on BioLIP

Model Weights

Classifier Label B

* Training on STRING DB, fine-tuning on BioLIP, and testing on BioLIP:
- AUROC of 0.909

18

sl

Emade
COMBINE (a4




RAPPPID predicts interaction of HER2 with Trastuzumab and Pertuzumab

* How might one use RAPPPID to validate hypothesized interactions between:
—  Target proteins

- Candidate therapeutic proteins and peptides

* Two examples: Trastuzumab and Pertuzumab.
— Recombinant humanised monoclonal antibodies

— Used for HER2-positive metastatic breast cancer

sl

Emad'
19 C’(h)aMgBINE lab




RAPPPID predicts interaction of HER2 with Trastuzumab and Pertuzumab

Distribution of Trastuzumab Interaction Probabilities
with all Proteins of the Human Proteome as Predicted by RAPPPID
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RAPPPID predicts interaction of HER2 with Trastuzumab and Pertuzumab
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Thank you

Questions?




Is RAPPPID just identifying similar sequences?
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Existing PPI datasets are not great for Deep Learning.

*  We wanted to use additional datasets, like HIPPIE and iRefWeb

* Only STRING has enough high-confidence edges for deep learning purposes
- 98.5% fewer edges in HIPPIE than in STRING (human, 95% confidence)
- 87.9% fewer edges with an 85% confidence.

- 75% fewer edges in iRefWeb than in STRING (human, 95% confidence)

* This is made worse by the fact that PPI datasets overfit terribly to begin with
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False-Positive Rate

* We evaluated the false-positive rate of confidence score-filtered STRING dataset

—  We used curated and experimentally validated non-interacting protein pairs from
Negatome

*  We compared the set of proteins that are:
—  Both in STRING and Negatome

- Evaluating the number of negative edges in Negatome that were considered a positive
edge in this interesection

« Estimated the false-positive rate of our STRING dataset to be 4.01%

« Falls within the extected 5% upper-bound given by our 95% confidence threshold
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Protein Over-Representation

A4

PPI graphs are understood to be scale-free in the general case

That means that some hub proteins might be over-represented

But that isn’t the case.
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Curated negative examples

* We investigated using the curated database “Negatome” for the negative samples

* There are too few (1,191 negative H. sapiens pairs; 263,130 positive pairs)
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License

* These slides are licensed as follows:

BIRS 2022 Presentation: RAPPPID: Improving Protein Interaction Prediction on Unseen Proteins © 2022 by
Joseph Szymborski is licensed under Attribution-ShareAlike 4.0 International. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/4.0/

© @ © ccBy-saa0

Attribution-ShareAlike 4.0 International

This license requires that reusers give credit to the creator. It allows reusers to
distribute, remix, adapt, and build upon the material in any medium or format,
even for commercial purposes. If others remix, adapt, or build upon the

material, they must license the modified material under identical terms.

® BY: Credit must be given to you, the creator.

@ SA: Adaptations must be shared under the same terms.
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